

XsefPM Package Manifest Documentation

Contents:

	Overview
	Background

	XSEF Specification [WIP]
	Design Principles

	Conventions

	Document Format

	Document Specification

	Definitions

	Use Cases
	Keywords

	Stand Alone Package with an Inheritable Transaction

	Glossary

Indices and tables

	Index

	Search Page

XSEF Specification [WIP]

This document defines the specification for an XsefPM package manifest.
A package manifest provides metadata about a Package, and in most cases
should provide sufficient information about the packaged transactions and its
dependencies to do schema verification of its transactions.

Design Principles

This specification makes the following assumptions about the
document lifecycle.

	Package manifests are intended to be generated programatically by package
management software as part of the release process.

	Package manifests will be consumed by package managers during tasks like
installing package dependencies or building and deploying new
releases.

Conventions

RFC2119

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this
document are to be interpreted as described in RFC 2119.

	https://www.ietf.org/rfc/rfc2119.txt

Prefixed vs Unprefixed

A prefixed hexadecimal value begins with 0x. Unprefixed values
have no prefix. Unless otherwise specified, all hexadecimal values
should be represented with the 0x prefix.

	Prefixed

	0xdeadbeef

	Unprefixed

	deadbeef

Document Format

The canonical format is a single JSON object. Packages must conform to the
following serialization rules.

	The document must be tightly packed, meaning no linebreaks or
extra whitespace.

	The keys in all objects must be sorted alphabetically.

	Duplicate keys in the same object are invalid.

	The document must use UTF-8 [https://en.wikipedia.org/wiki/UTF-8] encoding.

	The document must not have a trailing newline.

	To ensure backwards compatibility, manifest_version is a forbidden
top-level key.

Document Specification

The following fields are defined for the package. Custom fields may be
included. Custom fields should be prefixed with x- to prevent
name collisions with future versions of the specification.

	See Also

	Formalized (JSON-Schema [http://json-schema.org]) version of
this specification: package.spec.json [https://github.com/xsefpm/xsefpm-spec/blob/master/spec/v1.spec.json]

	Jump To

	Definitions

XsefPM Manifest Version: manifest

The manifest field defines the specification version that
this document conforms to.

	Packages must include this field.

	Required

	Yes

	Key

	manifest

	Type

	String

	Allowed Values

	xsefpm/1

Package Name: name

The name field defines a human readable name for this package.

	Packages should include this field to be released on an XsefPM registry.

	Package names must begin with a lowercase letter and be comprised of only lowercase
letters, numeric characters, and the dash character -.

	Package names must not exceed 255 characters in length.

	Required

	If version is included.

	Key

	name

	Type

	String

	Format

	must match the regular expression
^[a-z][-a-z0-9]{0,255}$

Package Version: version

The version field declares the version number of this release.

	Packages should include this field to be released on an XsefPM registry.

	This value should conform to the semver [http://semver.org/] version numbering specification.

	Required

	If name is included.

	Key

	version

	Type

	String

Package Metadata: meta

The meta field defines a location for metadata about the package
which is not integral in nature for package installation, but may be
important or convenient to have on-hand for other reasons.

	This field should be included in all Packages.

	Required

	No

	Key

	meta

	Type

	Package Meta Object

Sources: sources

The sources field defines a source tree that should comprise the
full source tree necessary to recompile the transactions contained in this
release.

	Required

	No

	Key

	sources

	Type

	Object (String: Sources Object)

Transaction Types: transactionTypes

The transactionTypes field hosts the Transaction Types which have been
included in this release.

	Packages should only include transaction types that can be found in the source files for this package.

	Packages should not include transaction types from dependencies.

	Packages should not include abstract transactions in the transaction types section of a release.

	Required

	No

	Key

	transactionTypes

	Type

	Object (String: Transaction Type Object)

	Format

	
	Keys must be valid Transaction Aliases.

	Values must conform to the Transaction Type Object definition.

Transaction Groups: transaction groups

The transaction groups field holds the information about the transaction groups and their
issuing agency (e.g. ASC or U.N). These determine the settings that can be used to generate
the various transactionTypes included in this release.

	Required

	Yes

	Key

	transaction groups

	Type

	Array (the Transaction Group Information object)

Deployments: deployments

The deployments field holds the information for the |Trading Channel| insance on which
this release has Transaction Instances as well as the Transaction Types
and other deployment details for those deployed transaction instances.
The set of insance defined by the BIP122 URI keys for this
object must be unique. There cannot be two different URI keys in a deployments
field representing the same blockchain.

	Required

	No

	Key

	deployments

	Type

	Object (String: Object(String: Transaction Instance Object))

	Format

	
	Keys must be a valid URI/BIP122 URI URL and/or chain definition.

	
	Values must be objects which conform to the following format.

	
	Keys must be valid Transaction Instance Names.

	Values must be a valid Transaction Instance Object.

Build Dependencies: buildDependencies

The buildDependencies field defines a key/value mapping of XSEF
Packages that this project depends on.

	Required

	No

	Key

	buildDependencies

	Type

	Object (String: String)

	Format

	
	Keys must be valid package-names.

	Values must be a Content Addressable URI which resolves to a valid package that conforms the same XsefPM manifest version as its parent.

Definitions

Definitions for different objects used within the Package. All objects
allow custom fields to be included. Custom fields should be prefixed
with x- to prevent name collisions with future versions of the
specification.

The Link Reference Object

A Link Reference object has the following key/value pairs. All
link references are assumed to be associated with some corresponding
Schema.

Offsets: offsets

The offsets field is an array of integers, corresponding to each of the
start positions where the link reference appears in the schema.
Locations are 0-indexed from the beginning of the bytes representation of
the corresponding schema. This field is invalid if it references a position
that is beyond the end of the schema.

	Required

	Yes

	Type

	Array

Length: length

The length field is an integer which defines the length in bytes
of the link reference. This field is invalid if the end of the defined
link reference exceeds the end of the schema.

	Required

	Yes

	Type

	Integer

Name: name

The name field is a string which must be a valid Identifier.
Any link references which should be linked with the same
link value should be given the same name.

	Required

	No

	Type

	String

	Format

	must conform to the Identifier format.

The Link Value Object

Describes a single Link Value.

A Link Value object is defined to have the following key/value pairs.

Offsets: offsets

The offsets field defines the locations within the corresponding schema
where the value for this link value was written. These locations are
0-indexed from the beginning of the bytes representation of the
corresponding schema.

	Required

	Yes

	Type

	Integer

	Format

	See Below.

Format

Array of integers, where each integer must conform to all of the following.

	greater than or equal to zero

	strictly less than the length of the unprefixed hexadecimal
representation of the corresponding schema.

Type: type

The type field defines the value type for determining what is encoded
when linking the corresponding schema.

	Required

	Yes

	Type

	String

	Allowed Values

	"literal" for schema literals

"reference" for named references to a particular Transaction Instance

Value: value

The value field defines the value which should be written when
linking the corresponding schema.

	Required

	Yes

	Type

	String

	Format

	Determined based on type, see below.

Format

For static value literals (e.g. address), value must be a
byte string

To reference the address of a Transaction Instance from the current
package the value should be the name of that transaction instance.

	This value must be a valid Transaction Instance Name.

	The chain definition under which the transaction instance that this
link value belongs to must contain this value within its keys.

	This value may not reference the same transaction instance that
this link value belongs to.

To reference a transaction instance from a Package from somewhere
within the dependency tree the value is constructed as follows.

	Let [p1, p2, .. pn] define a path down the dependency tree.

	Each of p1, p2, pn must be valid package names.

	p1 must be present in keys of the build_dependencies for
the current package.

	For every pn where n > 1, pn must be present in the
keys of the build_dependencies of the package for pn-1.

	The value is represented by the string
<p1>:<p2>:<...>:<pn>:<transaction-instance> where all of <p1>,
<p2>, <pn> are valid package names and
<transaction-instance> is a valid Transaction Name.

	The <transaction-instance> value must be a valid
Transaction Instance Name.

	Within the package of the dependency defined by <pn>, all of the
following must be satisfiable:

	There must be exactly one chain defined under the
deployments key which matches the chain definition that this
link value is nested under.

	The <transaction-instance> value must be present in the keys
of the matching chain.

The Schema Object

A schema object has the following key/value pairs.

Schema: schema

The schema field is a string containing the 0x prefixed
hexadecimal representation of the schema.

	Required

	Yes

	Type

	String

	Format

	0x prefixed hexadecimal.

Link References: linkReferences

The linkReferences field defines the locations in the corresponding
schema which require linking.

	Required

	No

	Type

	Array

	Format

	All values must be valid Link Reference objects.
See also below.

Format

This field is considered invalid if any of the Link References are
invalid when applied to the corresponding schema field, or if
any of the link references intersect.

Intersection is defined as two link references which overlap.

Link Dependencies: linkDependencies

The linkDependencies defines the Link Values that have been used
to link the corresponding schema.

	Required

	No

	Type

	Array

	Format

	All values must be valid Link Value objects.
See also below.

Format

Validation of this field includes the following:

	Two link value objects must not contain any of the same values for
offsets.

	Each link value object must have a
corresponding link reference object under
the linkReferences field.

	The length of the resolved value must be equal to the
length of the corresponding Link Reference.

The Package Meta Object

The Package Meta object is defined to have the following key/value pairs.

Authors: authors

The authors field defines a list of human readable names for the
authors of this package. Packages may include this field.

	Required

	No

	Key

	authors

	Type

	Array (String)

License: license

The license field declares the license associated with this
package. This value should conform to the
SPDX [https://en.wikipedia.org/wiki/Software_Package_Data_Exchange]
format. Packages should include this field. If a file Source Object
defines its own license, that license takes precedence for that particular
file over this package-scoped meta license.

	Required

	No

	Key

	license

	Type

	String

Description: description

The description field provides additional detail that may be
relevant for the package. Packages may include this field.

	Required

	No

	Key

	description

	Type

	String

Keywords: keywords

The keywords field provides relevant keywords related to this
package.

	Required

	No

	Key

	keywords

	Type

	Array(String)

Links: links

The links field provides URIs to relevant resources associated with
this package. When possible, authors should use the following keys
for the following common resources.

	website: Primary website for the package.

	documentation: Package Documentation

	repository: Location of the project source code.

	Key

	links

	Type

	Object (String: String)

The Sources Object

A Sources object is defined to have the following fields.

	Key

	A unique identifier for the source file. (string)

	Value

	SourceObject

Source Object

Checksum: checksum

Hash of the source file.

	Required

	If there are no URLs present that contain a content hash.

	Key

	checksum

	Value

	ChecksumObject

URLs: urls

	Array of urls that resolve to the same source file.

	
	Urls should be stored on a content-addressable filesystem. If they are not, then either content
or checksum must be included.

	Urls must be prefixed with a scheme.

	If the resulting document is a directory the key should be interpreted as a directory path.

	If the resulting document is a file the key should be interpreted as a file path.

	Required

	If content is not included.

	Key

	urls

	Value

	Array(string)

Content: content

Inlined transaction source.

	Required

	If urls is not included.

	Key

	content

	Value

	string

Install Path: installPath

	Filesystem path of source file.

	
	Must be a relative filesystem path that begins with a ./.

	Must resolve to a path that is within the current virtual working directory.

	Must be unique across all included sources.

	Required

	This field must be included for the package to be writable to disk.

	Key

	installPath

	Value

	string

Type: type

The type field declares the type of the source file. The field should be one
of the following values: solidity, vyper, abi-json, solidity-ast-json.

	Required

	No

	Key

	type

	Type

	String

License: license

The license field declares the type of license associated with
this source file. When defined, this license overrides the
package-scoped Meta License.

	Required

	No

	Key

	license

	Type

	String

The Checksum Object

A Checksum object is defined to have the following key/value pairs.

Algorithm: algorithm

The algorithm used to generate the corresponding hash.

	Required

	Yes

	Type

	String

Hash: hash

The hash of a source files contents generated with the corresponding algorithm.

	Required

	Yes

	Type

	String

The Transaction Type Object

A Transaction Type object is defined to have the following key/value pairs.

Transaction Name: transactionName

The transactionName field defines the Transaction Name for this
Transaction Type.

	Required

	If the Transaction Name and Transaction Alias are not the
same.

	Type

	String

	Format

	Must be a valid Transaction Name.

Source ID: sourceId

The global source identifier for the source file from which this transaction type was generated.

	Required

	No

	Type

	String

	Value

	Must match a unique source ID included in the Sources Object for this package.

Deployment Schema: deploymentSchema

The deploymentSchema field defines the schema for this Transaction Type.

	Required

	No

	Type

	Object

	Format

	Must conform to the Schema Object format.

Grammar Schema: grammarSchema

The grammarSchema field defines the unlinked 0x-prefixed
grammar portion of Schema for this Transaction Type.

	Required

	Yes

	Type

	Object

	Format

	Must conform to the Schema Object format.

ABI: abi

	Required

	No

	Type

	Array

	Format

	Must conform to the Ethereum Transaction ABI JSON format [https://github.com/ethereum/wiki/wiki/Ethereum-Transaction-ABI#json].

UserDoc: userdoc

	Required

	No

	Type

	Object

	Format

	Must conform to the UserDoc [https://github.com/ethereum/wiki/wiki/Ethereum-Natural-Specification-Format#user-documentation] format.

DevDoc: devdoc

	Required

	No

	Type

	Object

	Format

	Must conform to the DevDoc [https://github.com/ethereum/wiki/wiki/Ethereum-Natural-Specification-Format#developer-documentation] format.

The Transaction Instance Object

A Transaction Instance Object represents a single deployed Transaction Instance
and is defined to have the following key/value pairs.

Transaction Type: transactionType

The transactionType field defines the Transaction Type for this
Transaction Instance. This can reference any of the transaction types
included in this Package or any of the transaction types found in any
of the package dependencies from the buildDependencies section of
the Package Manifest.

	Required

	Yes

	Type

	String

	Format

	See Below.

Format

Values for this field must conform to one of the two formats herein.

To reference a transaction type from this Package, use the format
<transaction-alias>.

	The <transaction-alias> value must be a valid Transaction Alias.

	The value must be present in the keys of the transactionTypes
section of this Package.

To reference a transaction type from a dependency, use the format
<package-name>:<transaction-alias>.

	The <package-name> value must be present in the keys of the
buildDependencies of this Package.

	The <transaction-alias> value must be be a valid Transaction Alias.

	The resolved package for <package-name> must contain the
<transaction-alias> value in the keys of the transactionTypes
section.

Contract Address: contract_address

The contract_address field defines the |Contract Address| of the Transaction Instance.

	Required

	Yes

	Type

	String

	Format

	Hex encoded 0x prefixed Ethereum address matching the
regular expression ^0x[0-9a-fA-F]{40}$.

Transaction: transaction

The transaction field defines the transaction hash in which this
Transaction Instance was created.

	Required

	No

	Type

	String

	Format

	0x prefixed hex encoded transaction hash.

Block: block

The block field defines the block hash in which this the transaction
which created this transaction instance was mined.

	Required

	No

	Type

	String

	Format

	0x prefixed hex encoded block hash.

grammar Schema: grammarSchema

The grammarSchema field defines the grammar portion of schema for this
Transaction Instance. When present, the value from this field supersedes
the grammarSchema from the Transaction Type for this Transaction Instance.

	Required

	No

	Type

	Object

	Format

	must conform to the Schema Object format.

Every entry in the linkReferences for this schema must have a
corresponding entry in the linkDependencies section.

The Transaction Group Information Object

The transaction groups field defines the various transaction groups and settings used
during compilation of any Transaction Types or Transaction Instance included in this pacakge.

A Transaction Group Information object is defined to have the following
key/value pairs.

Name name

The name field defines which transaction group was used in compilation.

	Required

	Yes

	Key

	name

	Type

	String

Version: version

The version field defines the version of the transaction group. The field
should be OS agnostic (OS not included in the string) and take the
form of either the stable version in semver [http://semver.org/] format or if built on a
nightly should be denoted in the form of <semver>-<commit-hash> ex:
0.4.8-commit.60cc1668.

	Required

	Yes

	Key

	version

	Type

	String

Settings: settings

The settings field defines any settings or configuration that was
used.

	Required

	No

	Key

	settings

	Type

	Object

Transaction Types: transactionTypes

A list of the Transaction Alias in this package that used this transaction group to generate its outputs.

	All transactionTypes that locally declare grammarSchema should be attributed for by a transaction group object.

	A single transactionTypes must not be attributed to more than one transaction group.

	Required

	No

	Key

	transactionTypes

	Type

	Array(Transaction Alias)

BIP122 URIs

BIP122 URIs are used to define a blockchain via a subset of the
BIP-122 [https://github.com/bitcoin/bips/blob/master/bip-0122.mediawiki]
spec.

blockchain://<genesis_hash>/block/<latest confirmed block hash>

The <genesis hash> represents the blockhash of the first block on
the chain, and <latest confirmed block hash> represents the hash of
the latest block that’s been reliably confirmed (package managers should
be free to choose their desired level of confirmations).

Glossary

Terms utilized throughout the specification

	API

	The JSON representation of the application programming interface. see Open EDI

	Address

	A public identifier for an account on a particular chain or URI

Example: `` HOSTNAME + PATH_TO_RESOURCE + “?” + CANONICAL_QUERY_STRING + “&X-Goog-Signature=” + REQUEST_SIGNATURE ``

	Schema

	The XSD or JSON-Schema defining the Trading Channel

Schema can either be linked or unlinked. (see Linking)

	Unlinked Schema

	The sections of code which are unlinked must be filled in with zero bytes.

Example: `` <FIXME> ``

	Linked Schema

	A representation of a non-standard schema.
The Schema utilizes a Link References to an Unlinked Schema, and can be replaced with the
desired Link Values.

Example: `` <FIXME> ``

	Chain Definition

	This definition originates from BIP122 URI [https://github.com/bitcoin/bips/blob/master/bip-0122.mediawiki].

A URI in the format blockchain://<chain_id>/block/<block_hash>

	chain_id is the unprefixed hexadecimal representation of the
genesis hash for the chain.

	block_hash is the unprefixed hexadecimal representation of the
hash of a block on the chain.

A chain is considered to match a chain definition if the the genesis
block hash matches the chain_id and the block defined by
block_hash can be found on that chain. It is possible for multiple
chains to match a single URI, in which case all chains are considered
valid matches

	Content Addressable URI

	Any URI which contains a cryptographic hash which can be used to verify
the integrity of the content found at the URI.

The URI format is defined in RFC3986

Example: `` HOSTNAME + PATH_TO_RESOURCE + “?” + CANONICAL_QUERY_STRING + “&X-Goog-Signature=” + REQUEST_SIGNATURE ``

	Transaction Alias

	This is a name used to reference a specific Transaction Type. Transaction
aliases must be unique within a single Package.

The transaction alias must use one of the following naming schemes:

	<transaction-name>

	<transaction-name><identifier>

The <transaction-name> portion must be the same as the
Transaction Name for this transaction type.

The <identifier> portion must match the regular expression
^[-a-zA-Z0-9]{1,256}$.

	Transaction Instance

	A transaction instance a specific deployed version of a Transaction Type.

All transaction instances have an Address on some specific chain.

	Transaction Instance Name

	A name which refers to a specific Transaction Instance on a specific
chain from the deployments of a single Package. This name must be
unique across all other transaction instances for the given chain. The
name must conform to the regular expression
^[a-zA-Z_$][a-zA-Z0-9_$]{0,255}$

In cases where there is a single deployed instance of a given
Transaction Type, package managers should use the Transaction Alias for
that transaction type for this name.

In cases where there are multiple deployed instances of a given
transaction type, package managers should use a name which provides
some added semantic information as to help differentiate the two
deployed instances in a meaningful way.

	Transaction Name

	The name found in the source code that defines a specific Transaction Type.
These names must conform to the regular expression
^[a-zA-Z_$][a-zA-Z0-9_$]{0,255}$.

There can be multiple transactions with the same transaction name in a
projects source files.

	Transaction Type

	Refers to a specific transaction in the package source.
This term can be used to refer to an abstract transaction, a normal
transaction, or a library. Two transactions are of the same transaction type if
they have the same bytecode.

Example:

transaction edifact.INVOC {
 ...
}

A deployed instance of the INVOC transaction would be of of type
INVOC.

	Identifier

	Refers generally to a named entity in the Package.

A string matching the regular expression ^[a-zA-Z][-_a-zA-Z0-9]{0,255}$

	Link Reference

	A location within a transaction’s bytecode which needs to be linked. A link
reference has the following properties.

	offset

	Defines the location within the bytecode where the
link reference begins.

	length

	Defines the length of the reference.

	name

	(optional.) A string to identify the reference

	Link Value

	A link value is the value which can be inserted in place of a
Link Reference

	Linking

	The act of replacing Link References with Link Values within some
Schema.

	Package

	Distribution of an application’s source or compiled bytecode along with
metadata related to authorship, license, versioning, et al.

For brevity, the term Package is often used metonymously to mean
Package Manifest.

	Package Manifest

	A machine-readable description of a package (See
v2-package-specification for information about the format for package
manifests.)

	Prefixed

	Schema string with leading 0x.

	Example

	0xdeadb33f

	Unprefixed

	Not Prefixed.

	Example

	deadb33f

Index

 A
 | C
 | I
 | L
 | P
 | S
 | T
 | U

A

 	
 	Address

 	
 	API

C

 	
 	Chain Definition

 	
 	Content Addressable URI

I

 	
 	Identifier

L

 	
 	Link Reference

 	
 	Link Value

 	Linking

P

 	
 	Package

 	
 	Package Manifest

 	Prefixed

S

 	
 	Schema

T

 	
 	Transaction Alias

 	Transaction Instance

 	
 	Transaction Instance Name

 	Transaction Name

 	Transaction Type

U

 	
 	Unprefixed

Overview

Background

These docs are meant to provide insight into the XSEF Packaging
Specification and facilitate implementation and adoption of these standards.

eXtended Standard Exchange Format

> Specification for a modern SEF implementation

The eXtended Standard Exchange Format (‘XSEF’) is an open-standard file format - files ending with the extension
.xsef.cfg - that defines the format and the format and implementation guideline for proprietary and standard EDI documents.

XSEF holds key advantages over other file formats in that it is designed for EDI

XSEF files are immediately useable by both users and computers
They’re small files and are easily transmitted easily via the web
You can edit them with either a text editor or an XSEF manager
XSEF is an open standard, so you can create and distribute XSEF files
without special permissions or royalties under the Mozilla Public License 2.0.

The sections may appear in any order, with these exceptions: the .VER, if present, must be first. The .INI section
must be the first section in the file if there is no .VER, or the second section if there is a .VER. Nothing may appear
before these, including a comment. The .STD record, if used, must appear before .SETS. Example

`
.VER 1.6
.INI
KAVERPO,,004 010,X,X12-4010,Kaver Corp X12-4010 Purchase Order
.STD ,RE
.SETS
`

`
[1]INVPO[2],,003[3]040,[4]X,X12-[5]3040,PO
`

`
`INVPO,,003 040,X,X12-3040,PO and INV for Slippers 'n Socks, Inc.`
`

	The standard or implementation name (INVPO in the example above), generally the same as the filename of the SEF file.

	Reserved

	The Functional Group Version, Release and Industry code which will identify the standard in any Functional
Group Envelope Header Segment. Each code is separated by a space. In the example, there is no industry code.
With an industry code, this field might contain: 003 030 UCS

	The responsible agency code, which identifies the standards organization in the Functional Group Header:
GC = GENDOD
T = for T.D.C.C. (EDIA)
TD = TRADACOMS
UN = for UN/EDIFACT
X = for ASC X12 (DISA)

	The standard on which this implementation guidelines is based.

	The description (title) of the implementation guideline.

The .VER section identifies the version and release of SEF, which is
currently 1.6. It should be the first record in the file. If the .VER
section is not present, SEF 1.0 is assumed.

These sections can occur anywhere after the .INI section. The
.PRIVATE section provides a place for companies to place information
that is useful to themselves but is of no interest to others. The
.PUBLIC section marks the end of the private section.

.STD is only included for these standards:
• Newer EDIFACT standards in which groups have position
numbers
• Newer EDIFACT and X12 standards that have repeating
elements
• Fixed-length standards like GENCOD.

The .SETS section defines the transaction set or message directory,
including:
• Each transaction set or message in the standard.
• For each transaction set or message, it lists each segment reference
in the order in which it appears. It also describes the requirement
and quantity for each segment when it appears in a particular
position in that set.
• Loops, groups, and tables are also set up.
In this section, all information about loops, groups, and segments is
hierarchical: for example, the quantity for a PER segment only applies
to that particular position in that particular set or message.

The .COMS section is the standard’s composite data element
dictionary: a list of all composites in the standard. It includes:
• The composite name (C001, etc.).
• A list of each subelement reference it contains, in order.
• Each subelement’s ID and requirement when used in this position
of this composite.
• Subelement relationals used within the composite.
• Subelement repeat counts.
• Masks for variations in the structure of a composite.
If the standard has no composites, this section will be omitted.

The .ELMS section is the standard’s data element dictionary: a list of
each element, its type, and its minimum and maximum data value
lengths.

The .CODES section is a list of each element that has code values,
along with its code values. It also provides information about code sets.

SPDX-License-Idnetifier: MPL-2.0

Use Cases

The following use cases were considered during the creation of this
specification.

HOSTNAME + PATH_TO_RESOURCE + “?” + CANONICAL_QUERY_STRING + “&X-Goog-Signature=” + REQUEST_SIGNATURE

	Stand Alone Package with an Inheritable Transaction

	e.g. 810

See full description.

	Dependent Package with an Inheritable Transaction

	e.g. transferable

See full description.

	Stand Alone Package with a Reusable Transaction

	e.g. standard-token

See full description.

Each use case builds incrementally on the previous one.

Keywords

	Stand Alone

	Package has no external dependencies (i.e. no build_dependencies),
contains all transaction data needed without reaching into another package.

	Dependent

	Package does not contain all necessary transaction data (i.e. has build_dependencies),
must reach into a package dependency to retrieve data.

	Inheritable

	Transaction doesn’t provide useful functionality on it’s own and is meant
to serve as a base transaction for others to inherit from.

	Reusable

	Transaction is useful on it’s own, meant to be used as-is.

	Deployed Transaction/Library

	Refers to an instance of a transaction/library that has already been
deployed to a specific address on a chain.

	Package Dependency

	External dependency directly referenced via the build_dependencies of a package.

	Deep Dependency

	External dependency referenced via the build_dependencies of a package dependency
(or by reaching down dependency tree as far as necessary).

Stand Alone Package with an Inheritable Transaction

For the first example we’ll look at a package which only contains
transactions which serve as base transactions for other transactions to inherit
from but do not provide any real useful functionality on their own. The
common edifact pattern is a example for this use case.

For this example we will assume this file is located in the schema
source file ./transactions/edifact.sol

The edifact package contains a single schema source source file
which is intended to be used as a base transaction for other transactions to
be inherited from. The package does not define any pre-deployed
addresses for the edifact transaction.

The smallest Package for this example looks like this:

{
 "manifest_version": "2",
 "version": "1.0.0",
 "package_name": "edifact",
 "sources": {
 "./transactions/edifact/D40.INVOC.json": " some string "
 }
}

A Package which includes more than the minimum information would look
like this.

This fully fleshed out Package is meant to demonstrate various pieces of
optional data that can be included. However, for the remainder of our
edifact we will be using minimalistic Packages to keep our edifact as
succinct as possible.

XSEF Specification [WIP]

This document defines the specification for an XsefPM package manifest.
A package manifest provides metadata about a Package, and in most cases
should provide sufficient information about the packaged transactions and its
dependencies to do schema verification of its transactions.

Design Principles

This specification makes the following assumptions about the
document lifecycle.

	Package manifests are intended to be generated programatically by package
management software as part of the release process.

	Package manifests will be consumed by package managers during tasks like
installing package dependencies or building and deploying new
releases.

Conventions

RFC2119

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this
document are to be interpreted as described in RFC 2119.

	https://www.ietf.org/rfc/rfc2119.txt

Prefixed vs Unprefixed

A prefixed hexadecimal value begins with 0x. Unprefixed values
have no prefix. Unless otherwise specified, all hexadecimal values
should be represented with the 0x prefix.

	Prefixed

	0xdeadbeef

	Unprefixed

	deadbeef

Document Format

The canonical format is a single JSON object. Packages must conform to the
following serialization rules.

	The document must be tightly packed, meaning no linebreaks or
extra whitespace.

	The keys in all objects must be sorted alphabetically.

	Duplicate keys in the same object are invalid.

	The document must use UTF-8 [https://en.wikipedia.org/wiki/UTF-8] encoding.

	The document must not have a trailing newline.

	To ensure backwards compatibility, manifest_version is a forbidden
top-level key.

Document Specification

The following fields are defined for the package. Custom fields may be
included. Custom fields should be prefixed with x- to prevent
name collisions with future versions of the specification.

	See Also

	Formalized (JSON-Schema [http://json-schema.org]) version of
this specification: package.spec.json [https://github.com/xsefpm/xsefpm-spec/blob/master/spec/v1.spec.json]

	Jump To

	Definitions

XsefPM Manifest Version: manifest

The manifest field defines the specification version that
this document conforms to.

	Packages must include this field.

	Required

	Yes

	Key

	manifest

	Type

	String

	Allowed Values

	xsefpm/1

Package Name: name

The name field defines a human readable name for this package.

	Packages should include this field to be released on an XsefPM registry.

	Package names must begin with a lowercase letter and be comprised of only lowercase
letters, numeric characters, and the dash character -.

	Package names must not exceed 255 characters in length.

	Required

	If version is included.

	Key

	name

	Type

	String

	Format

	must match the regular expression
^[a-z][-a-z0-9]{0,255}$

Package Version: version

The version field declares the version number of this release.

	Packages should include this field to be released on an XsefPM registry.

	This value should conform to the semver [http://semver.org/] version numbering specification.

	Required

	If name is included.

	Key

	version

	Type

	String

Package Metadata: meta

The meta field defines a location for metadata about the package
which is not integral in nature for package installation, but may be
important or convenient to have on-hand for other reasons.

	This field should be included in all Packages.

	Required

	No

	Key

	meta

	Type

	Package Meta Object

Sources: sources

The sources field defines a source tree that should comprise the
full source tree necessary to recompile the transactions contained in this
release.

	Required

	No

	Key

	sources

	Type

	Object (String: Sources Object)

Transaction Types: transactionTypes

The transactionTypes field hosts the Transaction Types which have been
included in this release.

	Packages should only include transaction types that can be found in the source files for this package.

	Packages should not include transaction types from dependencies.

	Packages should not include abstract transactions in the transaction types section of a release.

	Required

	No

	Key

	transactionTypes

	Type

	Object (String: Transaction Type Object)

	Format

	
	Keys must be valid Transaction Aliases.

	Values must conform to the Transaction Type Object definition.

Transaction Groups: transaction groups

The transaction groups field holds the information about the transaction groups and their
issuing agency (e.g. ASC or U.N). These determine the settings that can be used to generate
the various transactionTypes included in this release.

	Required

	Yes

	Key

	transaction groups

	Type

	Array (the Transaction Group Information object)

Deployments: deployments

The deployments field holds the information for the |Trading Channel| insance on which
this release has Transaction Instances as well as the Transaction Types
and other deployment details for those deployed transaction instances.
The set of insance defined by the BIP122 URI keys for this
object must be unique. There cannot be two different URI keys in a deployments
field representing the same blockchain.

	Required

	No

	Key

	deployments

	Type

	Object (String: Object(String: Transaction Instance Object))

	Format

	
	Keys must be a valid URI/BIP122 URI URL and/or chain definition.

	
	Values must be objects which conform to the following format.

	
	Keys must be valid Transaction Instance Names.

	Values must be a valid Transaction Instance Object.

Build Dependencies: buildDependencies

The buildDependencies field defines a key/value mapping of XSEF
Packages that this project depends on.

	Required

	No

	Key

	buildDependencies

	Type

	Object (String: String)

	Format

	
	Keys must be valid package-names.

	Values must be a Content Addressable URI which resolves to a valid package that conforms the same XsefPM manifest version as its parent.

Definitions

Definitions for different objects used within the Package. All objects
allow custom fields to be included. Custom fields should be prefixed
with x- to prevent name collisions with future versions of the
specification.

The Link Reference Object

A Link Reference object has the following key/value pairs. All
link references are assumed to be associated with some corresponding
Schema.

Offsets: offsets

The offsets field is an array of integers, corresponding to each of the
start positions where the link reference appears in the schema.
Locations are 0-indexed from the beginning of the bytes representation of
the corresponding schema. This field is invalid if it references a position
that is beyond the end of the schema.

	Required

	Yes

	Type

	Array

Length: length

The length field is an integer which defines the length in bytes
of the link reference. This field is invalid if the end of the defined
link reference exceeds the end of the schema.

	Required

	Yes

	Type

	Integer

Name: name

The name field is a string which must be a valid Identifier.
Any link references which should be linked with the same
link value should be given the same name.

	Required

	No

	Type

	String

	Format

	must conform to the Identifier format.

The Link Value Object

Describes a single Link Value.

A Link Value object is defined to have the following key/value pairs.

Offsets: offsets

The offsets field defines the locations within the corresponding schema
where the value for this link value was written. These locations are
0-indexed from the beginning of the bytes representation of the
corresponding schema.

	Required

	Yes

	Type

	Integer

	Format

	See Below.

Format

Array of integers, where each integer must conform to all of the following.

	greater than or equal to zero

	strictly less than the length of the unprefixed hexadecimal
representation of the corresponding schema.

Type: type

The type field defines the value type for determining what is encoded
when linking the corresponding schema.

	Required

	Yes

	Type

	String

	Allowed Values

	"literal" for schema literals

"reference" for named references to a particular Transaction Instance

Value: value

The value field defines the value which should be written when
linking the corresponding schema.

	Required

	Yes

	Type

	String

	Format

	Determined based on type, see below.

Format

For static value literals (e.g. address), value must be a
byte string

To reference the address of a Transaction Instance from the current
package the value should be the name of that transaction instance.

	This value must be a valid Transaction Instance Name.

	The chain definition under which the transaction instance that this
link value belongs to must contain this value within its keys.

	This value may not reference the same transaction instance that
this link value belongs to.

To reference a transaction instance from a Package from somewhere
within the dependency tree the value is constructed as follows.

	Let [p1, p2, .. pn] define a path down the dependency tree.

	Each of p1, p2, pn must be valid package names.

	p1 must be present in keys of the build_dependencies for
the current package.

	For every pn where n > 1, pn must be present in the
keys of the build_dependencies of the package for pn-1.

	The value is represented by the string
<p1>:<p2>:<...>:<pn>:<transaction-instance> where all of <p1>,
<p2>, <pn> are valid package names and
<transaction-instance> is a valid Transaction Name.

	The <transaction-instance> value must be a valid
Transaction Instance Name.

	Within the package of the dependency defined by <pn>, all of the
following must be satisfiable:

	There must be exactly one chain defined under the
deployments key which matches the chain definition that this
link value is nested under.

	The <transaction-instance> value must be present in the keys
of the matching chain.

The Schema Object

A schema object has the following key/value pairs.

Schema: schema

The schema field is a string containing the 0x prefixed
hexadecimal representation of the schema.

	Required

	Yes

	Type

	String

	Format

	0x prefixed hexadecimal.

Link References: linkReferences

The linkReferences field defines the locations in the corresponding
schema which require linking.

	Required

	No

	Type

	Array

	Format

	All values must be valid Link Reference objects.
See also below.

Format

This field is considered invalid if any of the Link References are
invalid when applied to the corresponding schema field, or if
any of the link references intersect.

Intersection is defined as two link references which overlap.

Link Dependencies: linkDependencies

The linkDependencies defines the Link Values that have been used
to link the corresponding schema.

	Required

	No

	Type

	Array

	Format

	All values must be valid Link Value objects.
See also below.

Format

Validation of this field includes the following:

	Two link value objects must not contain any of the same values for
offsets.

	Each link value object must have a
corresponding link reference object under
the linkReferences field.

	The length of the resolved value must be equal to the
length of the corresponding Link Reference.

The Package Meta Object

The Package Meta object is defined to have the following key/value pairs.

Authors: authors

The authors field defines a list of human readable names for the
authors of this package. Packages may include this field.

	Required

	No

	Key

	authors

	Type

	Array (String)

License: license

The license field declares the license associated with this
package. This value should conform to the
SPDX [https://en.wikipedia.org/wiki/Software_Package_Data_Exchange]
format. Packages should include this field. If a file Source Object
defines its own license, that license takes precedence for that particular
file over this package-scoped meta license.

	Required

	No

	Key

	license

	Type

	String

Description: description

The description field provides additional detail that may be
relevant for the package. Packages may include this field.

	Required

	No

	Key

	description

	Type

	String

Keywords: keywords

The keywords field provides relevant keywords related to this
package.

	Required

	No

	Key

	keywords

	Type

	Array(String)

Links: links

The links field provides URIs to relevant resources associated with
this package. When possible, authors should use the following keys
for the following common resources.

	website: Primary website for the package.

	documentation: Package Documentation

	repository: Location of the project source code.

	Key

	links

	Type

	Object (String: String)

The Sources Object

A Sources object is defined to have the following fields.

	Key

	A unique identifier for the source file. (string)

	Value

	SourceObject

Source Object

Checksum: checksum

Hash of the source file.

	Required

	If there are no URLs present that contain a content hash.

	Key

	checksum

	Value

	ChecksumObject

URLs: urls

	Array of urls that resolve to the same source file.

	
	Urls should be stored on a content-addressable filesystem. If they are not, then either content
or checksum must be included.

	Urls must be prefixed with a scheme.

	If the resulting document is a directory the key should be interpreted as a directory path.

	If the resulting document is a file the key should be interpreted as a file path.

	Required

	If content is not included.

	Key

	urls

	Value

	Array(string)

Content: content

Inlined transaction source.

	Required

	If urls is not included.

	Key

	content

	Value

	string

Install Path: installPath

	Filesystem path of source file.

	
	Must be a relative filesystem path that begins with a ./.

	Must resolve to a path that is within the current virtual working directory.

	Must be unique across all included sources.

	Required

	This field must be included for the package to be writable to disk.

	Key

	installPath

	Value

	string

Type: type

The type field declares the type of the source file. The field should be one
of the following values: solidity, vyper, abi-json, solidity-ast-json.

	Required

	No

	Key

	type

	Type

	String

License: license

The license field declares the type of license associated with
this source file. When defined, this license overrides the
package-scoped Meta License.

	Required

	No

	Key

	license

	Type

	String

The Checksum Object

A Checksum object is defined to have the following key/value pairs.

Algorithm: algorithm

The algorithm used to generate the corresponding hash.

	Required

	Yes

	Type

	String

Hash: hash

The hash of a source files contents generated with the corresponding algorithm.

	Required

	Yes

	Type

	String

The Transaction Type Object

A Transaction Type object is defined to have the following key/value pairs.

Transaction Name: transactionName

The transactionName field defines the Transaction Name for this
Transaction Type.

	Required

	If the Transaction Name and Transaction Alias are not the
same.

	Type

	String

	Format

	Must be a valid Transaction Name.

Source ID: sourceId

The global source identifier for the source file from which this transaction type was generated.

	Required

	No

	Type

	String

	Value

	Must match a unique source ID included in the Sources Object for this package.

Deployment Schema: deploymentSchema

The deploymentSchema field defines the schema for this Transaction Type.

	Required

	No

	Type

	Object

	Format

	Must conform to the Schema Object format.

Grammar Schema: grammarSchema

The grammarSchema field defines the unlinked 0x-prefixed
grammar portion of Schema for this Transaction Type.

	Required

	Yes

	Type

	Object

	Format

	Must conform to the Schema Object format.

ABI: abi

	Required

	No

	Type

	Array

	Format

	Must conform to the Ethereum Transaction ABI JSON format [https://github.com/ethereum/wiki/wiki/Ethereum-Transaction-ABI#json].

UserDoc: userdoc

	Required

	No

	Type

	Object

	Format

	Must conform to the UserDoc [https://github.com/ethereum/wiki/wiki/Ethereum-Natural-Specification-Format#user-documentation] format.

DevDoc: devdoc

	Required

	No

	Type

	Object

	Format

	Must conform to the DevDoc [https://github.com/ethereum/wiki/wiki/Ethereum-Natural-Specification-Format#developer-documentation] format.

The Transaction Instance Object

A Transaction Instance Object represents a single deployed Transaction Instance
and is defined to have the following key/value pairs.

Transaction Type: transactionType

The transactionType field defines the Transaction Type for this
Transaction Instance. This can reference any of the transaction types
included in this Package or any of the transaction types found in any
of the package dependencies from the buildDependencies section of
the Package Manifest.

	Required

	Yes

	Type

	String

	Format

	See Below.

Format

Values for this field must conform to one of the two formats herein.

To reference a transaction type from this Package, use the format
<transaction-alias>.

	The <transaction-alias> value must be a valid Transaction Alias.

	The value must be present in the keys of the transactionTypes
section of this Package.

To reference a transaction type from a dependency, use the format
<package-name>:<transaction-alias>.

	The <package-name> value must be present in the keys of the
buildDependencies of this Package.

	The <transaction-alias> value must be be a valid Transaction Alias.

	The resolved package for <package-name> must contain the
<transaction-alias> value in the keys of the transactionTypes
section.

Contract Address: contract_address

The contract_address field defines the |Contract Address| of the Transaction Instance.

	Required

	Yes

	Type

	String

	Format

	Hex encoded 0x prefixed Ethereum address matching the
regular expression ^0x[0-9a-fA-F]{40}$.

Transaction: transaction

The transaction field defines the transaction hash in which this
Transaction Instance was created.

	Required

	No

	Type

	String

	Format

	0x prefixed hex encoded transaction hash.

Block: block

The block field defines the block hash in which this the transaction
which created this transaction instance was mined.

	Required

	No

	Type

	String

	Format

	0x prefixed hex encoded block hash.

grammar Schema: grammarSchema

The grammarSchema field defines the grammar portion of schema for this
Transaction Instance. When present, the value from this field supersedes
the grammarSchema from the Transaction Type for this Transaction Instance.

	Required

	No

	Type

	Object

	Format

	must conform to the Schema Object format.

Every entry in the linkReferences for this schema must have a
corresponding entry in the linkDependencies section.

The Transaction Group Information Object

The transaction groups field defines the various transaction groups and settings used
during compilation of any Transaction Types or Transaction Instance included in this pacakge.

A Transaction Group Information object is defined to have the following
key/value pairs.

Name name

The name field defines which transaction group was used in compilation.

	Required

	Yes

	Key

	name

	Type

	String

Version: version

The version field defines the version of the transaction group. The field
should be OS agnostic (OS not included in the string) and take the
form of either the stable version in semver [http://semver.org/] format or if built on a
nightly should be denoted in the form of <semver>-<commit-hash> ex:
0.4.8-commit.60cc1668.

	Required

	Yes

	Key

	version

	Type

	String

Settings: settings

The settings field defines any settings or configuration that was
used.

	Required

	No

	Key

	settings

	Type

	Object

Transaction Types: transactionTypes

A list of the Transaction Alias in this package that used this transaction group to generate its outputs.

	All transactionTypes that locally declare grammarSchema should be attributed for by a transaction group object.

	A single transactionTypes must not be attributed to more than one transaction group.

	Required

	No

	Key

	transactionTypes

	Type

	Array(Transaction Alias)

BIP122 URIs

BIP122 URIs are used to define a blockchain via a subset of the
BIP-122 [https://github.com/bitcoin/bips/blob/master/bip-0122.mediawiki]
spec.

blockchain://<genesis_hash>/block/<latest confirmed block hash>

The <genesis hash> represents the blockhash of the first block on
the chain, and <latest confirmed block hash> represents the hash of
the latest block that’s been reliably confirmed (package managers should
be free to choose their desired level of confirmations).

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 XsefPM Package Manifest Documentation

 		
 Overview

 		
 Background

 		
 XSEF Specification [WIP]

 		
 Design Principles

 		
 Conventions

 		
 RFC2119

 		
 Prefixed vs Unprefixed

 		
 Document Format

 		
 Document Specification

 		
 XsefPM Manifest Version: manifest

 		
 Package Name: name

 		
 Package Version: version

 		
 Package Metadata: meta

 		
 Sources: sources

 		
 Transaction Types: transactionTypes

 		
 Transaction Groups: transaction groups

 		
 Deployments: deployments

 		
 Build Dependencies: buildDependencies

 		
 Definitions

 		
 The Link Reference Object

 		
 The Link Value Object

 		
 The Schema Object

 		
 The Package Meta Object

 		
 The Sources Object

 		
 The Checksum Object

 		
 The Transaction Type Object

 		
 The Transaction Instance Object

 		
 The Transaction Group Information Object

 		
 BIP122 URIs

 		
 Use Cases

 		
 Keywords

 		
 Stand Alone Package with an Inheritable Transaction

 		
 Glossary

_static/up-pressed.png

_static/up.png

